
University of Nizhni Novgorod
Faculty of Computational Mathematics & Cybernetics

Introduction to Parallel Introduction to Parallel
ProgrammingProgramming

Section 4. Part 2.
Parallel Programming with MPI…

Gergel V.P., Professor, D.Sc.,
Software Department

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 2)
© Gergel V.P. 2 54

Contents

Communications between Two Processes
– Communication Modes
– Nonblocking Communications
– Simultaneous Sending and Receiving

Collective Communications
– Data Scattering
– Data Gathering
– All to All Communications
– Reduction Operations

Derived Data Types in MPI
Summary

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 2)
© Gergel V.P. 3 54

Communications between Two Processes…

Communication Modes…
The Standard mode:
– It is provided by the function MPI_Send,
– The sending process is blocked during the time of the

function execution,
– The buffer may be used repeatedly after the function

termination,
– The state of the transmitted message may be different at the

moment of the function termination, i.e. the message may be
located in the sending process, may be being transmitted,
may be stored in the receiving process, or may be received
by the receiving process by means of the function MPI_Recv

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 2)
© Gergel V.P. 4 54

Communications between Two Processes…

Communication Modes…
The Synchronous mode:
– The message communication function is terminated only when the

process got the confirmation that the receiving process has started
receiving the transmitted message:

The Ready mode:
– May be used only if the message receiving operation has already been

initiated. The message buffer may be repeatedly used after the
termination of the message sending function:

MPI_Rsend – the function of sending message in the Ready mode

MPI_Ssend – the function of sending message in the Synchronous mode

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 2)
© Gergel V.P. 5 54

Communication Modes…
The Buffered mode:
– Assumes the use of additional system buffers, which are used for copying

the transmitted messages in them; the function of message sending is
terminated immediately after the message has been copied in the buffer:

– To use the buffered communication mode, the MPI memory buffer for
buffering messages should be created and passed into MPI:

– After all the operations with the buffer are terminated, it must be
disconnected from MPI by means of the following function :

MPI_Bsend – the function of sending message in the Buffered mode,

int MPI_Buffer_attach(void *buf, int size),
where

- buf - the memory buffer for buffering messages,
- size – buffer size.

int MPI_Buffer_detach(void *buf, int *size);

Communications between Two Processes…

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 2)
© Gergel V.P. 6 54

Communications between Two Processes…

Communication Modes:
The Ready mode is formally the fastest of all, but it is used quite
seldom, as it is usually rather difficult to provide the readiness of
the receiving
The Standard and the Buffered modes can also be executed
sufficiently fast, but may lead to sizeable recourse expenses
(memory). In general, they may be recommended for
transmitting short messages
The Synchronous mode is the slowest of all, as it requires the
confirmation of receiving. At the same time, this mode is the
most reliable one. It may be recommended for transmitting long
messages

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 2)
© Gergel V.P. 7 54

Communications between Two Processes…

Nonblocking Communications…
Blocking functions block the process execution until the called
functions terminate their operations
Nonblocking functions provide the possibility to execute the
functions of data exchange without blocking the processes in
order to carry out the message communications and the
computations in parallel. The nonblocking method:
– Is rather complicated,
– May provide significant decreasing the efficiency losses for

parallel computations, which arise because of rather slow
communication operations

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 2)
© Gergel V.P. 8 54

Communications between Two Processes…

Nonblocking Communications…
The names of the nonblocking functions are formed by means
of adding the prefix I (Immediate) to the corresponding blocking
function names:

int MPI_Isend(void *buf, int count, MPI_Datatype type,
int dest, int tag, MPI_Comm comm, MPI_Request *request);

int MPI_Issend(void *buf, int count, MPI_Datatype type,
int dest, int tag, MPI_Comm comm, MPI_Request *request);

int MPI_Ibsend(void *buf, int count, MPI_Datatype type,
int dest, int tag, MPI_Comm comm, MPI_Request *request);

int MPI_Irsend(void *buf, int count, MPI_Datatype type,
int dest, int tag, MPI_Comm comm, MPI_Request *request);

int MPI_Irecv(void *buf, int count, MPI_Datatype type,
int source, int tag, MPI_Comm comm, MPI_Request *request);

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 2)
© Gergel V.P. 9 54

Communications between Two Processes…

Nonblocking Communications…
The state of the executed nonblocking data communication
operation may be checked by means of the following function:

This function is a nonblocking one.

int MPI_Test(MPI_Request *request, int *flag,
MPI_status *status),

where
- request - is the operation descriptor, which is defined when

the nonblocking function is called,
- flag - is the result of checking (=true, if the operation is terminated),
- status - the result of the function execution (only for

the terminated operation).

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 2)
© Gergel V.P. 10 54

Communications between Two Processes…

Nonblocking Communications…
The following scheme of combining the computations and the
execution of the nonblocking communication operation is
possible:

Blocking operation of waiting for the nonblocking operation
termination:

MPI_Isend(buf,count,type,dest,tag,comm,&request);
…
do {

…
MPI_Test(&request,&flag,&status);

} while (!flag);

int MPI_Wait(MPI_Request *request, MPI_status *status);

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 2)
© Gergel V.P. 11 54

Communications between Two Processes…

MPI_Testall - checking the termination of all the enumerated
communication operations,

MPI_Waitall – waiting for the termination of all the enumerated
communication operations,

MPI_Testany - checking the termination of at least one of the enumerated
communication operations,

MPI_Waitany – waiting for the termination of any of the enumerated
communication operations,

MPI_Testsome - checking the termination of each enumerated
communication operation,

MPI_Waitsome - waiting for termination of at least one of the enumerated
communication operations and estimating the state of all the operations.

Nonblocking Communications
Additional checking and waiting functions for nonblocking
exchange operations:

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 2)
© Gergel V.P. 12 54

Communications between Two Processes
The Simultaneous Sending and Receiving

Efficient simultaneous execution of data sending and receiving operations
may be provided by means of the following MPI function:

In case when the messages are of the same type, MPI is able to use a
single buffer:

int MPI_Sendrecv(
void *sbuf, int scount, MPI_Datatype stype, int dest, int stag,
void *rbuf, int rcount, MPI_Datatype rtype, int source, int rtag,
MPI_Comm comm, MPI_Status *status),

where
- sbuf, scount, stype, dest, stag - the parameters of the transmitted message,
- rbuf, rcount, rtype, source, rtag - the parameters of the received message,
- comm - the communicator, within of which the data communication is executed,
- status – the results of the operation execution.

int MPI_Sendrecv_replace(void *buf, int count, MPI_Datatype type,
int dest, int stag, int source, int rtag, MPI_Comm comm,
MPI_Status *status).

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 2)
© Gergel V.P. 13 54

Collective Communication Operations…

MPI operations are called collective,
if all the processes of the communicator

participate in them

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 2)
© Gergel V.P. 14 54

Collective Communication Operations…

Scattering Data from a Process to all the Processes…
Scattering data – the root process transmits the equal sized
messages to all the processes

In contrast to the broadcast operation, in this case the
transmitted data to different processes may be differed

int MPI_Scatter(void *sbuf,int scount,MPI_Datatype sto type,
void *rbuf,int rcount,MPI_Datatype rtype,
int root, MPI_Comm comm),

where
- sbuf, scount, stype - the parameters of the transmitted message

(scount defines the number of elements transmitted to each process),
- rbuf, rcount, rtype - the parameters of the message received in

the processes,
- root – the rank of the process, which performs data scattering,
- comm - the communicator, within of which data scattering is performed.

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 2)
© Gergel V.P. 15 54

Collective Communication Operations…

Scattering Data from a Process to all the Processes
The call of MPI_Scatter should be provided in each
communicator process
MPI_Scatter transmits messages of the same size to all the
processes. When the message sizes for different processes
may be different, the execution of data scattering is provided
by means of the function MPI_Scatterv

root 0 1 2 • • • p-1

1

0

p-1

• • •

• • •

а) Before the operation

root

1

0

p-1

• • •

• • •

b) After the operation

0

1

root

p-1

• • •

• • •

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 2)
© Gergel V.P. 16 54

Collective Communication Operations…

Gathering Data from All the Processes to a Process…
Gathering data from all the processes to a process is
reverse to data scattering. The following MPI function
provides the execution of this operation:
int MPI_Gather(void *sbuf,int scount,MPI_Datatype stype,

void *rbuf,int rcount,MPI_Datatype rtype,
int root, MPI_Comm comm),

where
- sbuf, scount, stype - the parameters of the transmitted message,
- rbuf, rcount, rtype - the parameters of the received message,
- root – the rank of the process which performs data gathering,
- comm - the communicator, within of which data communication is executed.

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 2)
© Gergel V.P. 17 54

Collective Communication Operations…

Gathering Data from All the Processes to a Process…
The call of the function MPI_Garter for gathering the data must
be provided in each communicator process

root 0 1 2 • • • p-1

1

0

p-1

• • •

• • •

a) After the operation

root

1

0

p-1

• • •

• • •

b) Before the operation

0

1

root

p-1

• • •

• • •

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 2)
© Gergel V.P. 18 54

Collective Communication Operations…

Gathering Data from All the Processes to a Process
To obtain all the gathered data on each communicator
process, it is necessary to use the function of gathering and
distribution MPI_Allgather:

The execution of the general variant of data gathering
operation, when the sizes of the messages transmitted
among the processes may differ, is provided by means of
the functions MPI_Gatherv and MPI_Allgatherv

int MPI_Allgather(void *sbuf, int scount, MPI_Datatype stype,
void *rbuf, int rcount, MPI_Datatype rtype, MPI_Comm comm);

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 2)
© Gergel V.P. 19 54

Collective Communication Operations…

All to All Communications...
The total data exchange among processes is provided by the
function:

The function MPI_Alltoall should be called in each
communicator process during the execution of all to all data
communication operation
The variant of this operation in case when the sizes of the
transmitted messages may differ is provided by means of
the function MPI_Alltoallv

int MPI_Alltoall(void *sbuf,int scount,MPI_Datatype stype,
void *rbuf,int rcount, MPI_Datatype rtype,MPI_Comm comm),

where
- sbuf, scount, stype - the parameters of the transmitted messages,
- rbuf, rcount, rtype - the parameters of the received messages,
- comm - the communicator, within of which the data transmission is executed

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 2)
© Gergel V.P. 20 54

Collective Communication Operations…

All to All Communications

p-1 • • •

0

• • •

• • •

а) Before the operation

0 0 0 1 • • • 0 (p-1)

1
1 0 1 1 • • • 1 (p-1)

i
i 0 i 1 • • • i (p-1)

p-1

(p-1) 0 (p-1) 1 • • • (p-1) (p-1)

0

b) After the operation

0 0 1 0 • • • (p-1) 0

1
0 1 1 1 • • • (p-1) 1

i
0 i 1 i • • • (p-1) i

0 (p-1) 1 (p-1) • • • (p-1) (p-1)

•

• • •

• • •
• • •

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 2)
© Gergel V.P. 21 54

Collective Communication Operations…

Reduction Operations…
The function MPI_Reduce provides obtaining the results of data reduction
only on one process
To obtain the data reduction results on each of the communicator
processes, it is necessary to use the function MPI_Allreduce:

The possibility to control the distribution of the data among the processes is
provided by the function MPI_Reduce_scatter
One more variant of the operation of gathering and processing data, which
provides obtaining all the partial results of reduction, may be achieved by
means of the following function:

int MPI_Allreduce(void *sendbuf, void *recvbuf,int count,
MPI_Datatype type,MPI_Op op,MPI_Comm comm);

int MPI_Scan(void *sendbuf, void *recvbuf,int count,
MPI_Datatype type, MPI_Op op,MPI_Comm comm);

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 2)
© Gergel V.P. 22 54

Collective Communication Operations

Reduction Operations
The general scheme of the function MPI_Scan execution is the
following:

The received message elements are the results of processing the
corresponding transmitted message elements. To obtain the results at
the process with the rank i, 0≤ i<p, the data from the processes with
the ranks smaller or equal to i are used

i

1

0

p-1

• • •

• • •

b) After the operation

i

1

0

p-1

• • •

• • •

а) Before the operation

• • •

• • •

x00 x01 • • • x0,n-1x02

x10 x11 • • • x1,n-1x12

xi0 xi1 • • • xi,n-1xi2

xn-1,0 xn-1,1 • • • xn-1,n-1

y00 y01 • • • y0,n-1y02

y10 y11 • • • y1,n-1y12

yi0 yi1 • • • yi,n-1yi2

yn-1,0 yn-1,1 • • • yn-1,n-1

•

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 2)
© Gergel V.P. 23 54

Derived Data Types in MPI…

In all the above considered examples of the data
communication functions it was assumed, that the messages
are a certain continuous vector of the elements of the type
predetermined in MPI

The data necessary to be transmitted may not be located close
to each other and contain the values of different types:
– The data may be transmitted using several messages (this method will

not be efficient because of accumulating the latencies of the number of
executed data communication operations),

– The data necessary to be transmitted can be packed into the format of
a continuous vector (in that case there are some excessive operations
of copying the data)

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 2)
© Gergel V.P. 24 54

The derived data type in MPI is the description of a set of the
values of the predetermined MPI types, the described values
are not necessarily located continuously in the memory:
– The type is set in MPI by means of the type map in the form of the

sequential descriptions of values included into the type, each separate
value is described by pointing to the type and the offset of the location
address from a certain origin address, i.e. :

– The part of the type map, which contains only the types of values, is
called in MPI a type signature:

TypeMap = {(type0, disp0), (type1, disp1), … , (typen-1, dispn-1)}

TypeSignature = {type0, type1, … , typen-1}

Derived Data Types in MPI…

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 2)
© Gergel V.P. 25 54

Example:
– Let the message include the following variable values:

– Then the derived type for the description of the data should
have the map of the following form:

double a; /* address 24 */
double b; /* address 40 */
int n; /* address 48 */

{(MPI_DOUBLE,0),
(MPI_DOUBLE,16),
(MPI_INT,24)

}

Derived Data Types in MPI…

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 2)
© Gergel V.P. 26 54

Derived Data Types in MPI…

The following number of new concepts is used in MPI for the
derived data types:
– The lower boundary of type:

– The upper boundary of type:

– The extent of type (the extent is the memory size in bytes, which should
be allocated for a derived type element):

– The size of the data type is the number of bytes that is required to place
a single value of this data type.

The difference between the values of the extent and the size is in the
approximation value needed for the address alignment

),(min)(jj dispTypeMaplb =

,))((max)(∆++= jjj typesizeofdispTypeMapub

,)()()(TypeMaplbTypeMapubTypeMapextent −=

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 2)
© Gergel V.P. 27 54

MPI provides the following functions for obtaining the values of
the extent and the type size:

The lower and the upper boundaries of the types may be
determined by means of the following functions:

The function of getting the address of the variable is essential
in constructing the derived types:

int MPI_Type_extent (MPI_Datatype type, MPI_Aint *extent);
int MPI_Type_size (MPI_Datatype type, MPI_Aint *size);

int MPI_Type_lb (MPI_Datatype type, MPI_Aint *disp);
int MPI_Type_ub (MPI_Datatype type, MPI_Aint *disp);

int MPI_Address (void *location, MPI_Aint *address);

Derived Data Types in MPI…

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 2)
© Gergel V.P. 28 54

Derived Data Types in MPI…

The Methods of Constructing the Derived Data Types:

– The continuous method makes possible to define a continuous set of the
elements of some data type as a new derived type,

– The vector method provides creating a new derived type as a set of
elements of some available type. Between the elements there may be
regular memory intervals. The size of the intervals is determined in the
number of the elements of the initial type, while in case of the h-vector
method this size has to be set in bytes,

– The index method differs from the vector method as the intervals
between the elements of the type are irregular,

– The structural method provides the most general description of the
derived type by pointing directly to the type map of the created data type

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 2)
© Gergel V.P. 29 54

Derived Data Types in MPI…

The Continuous Method:

– As it follows from the description, the new type newtype is composed as
the count elements of the initial type oldtype. For instance, if the type map
of the data type oldtype has the form

then the call of the function MPI_Type_contiguous with the following
parameters

will cause the creation of the new data type, the type map of which looks
as follows:

int MPI_Type_contiguous(int count,MPI_Data_type oldtype,
MPI_Datatype *newtype);

{ (MPI_INT,0),(MPI_DOUBLE,8) },

MPI_Type_contiguous (2, oldtype, &newtype);

{ (MPI_INT,0),(MPI_DOUBLE,8),(MPI_INT,16),(MPI_DOUBLE,24) }.

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 2)
© Gergel V.P. 30 54

The Vector Method…
– The new derived type is constructed in case of the vector

method as a number of blocks of the initial type elements.
The blocks are separated by the regular interval:

int MPI_Type_vector (int count, int blocklen, int stride,
MPI_Data_type oldtype, MPI_Datatype *newtype),

where
- count – the number of blocks,
- blocklen – the size of each block,
- stride – the number of elements, located between

the two neighboring blocks,
- oldtype - the initial data type,
- newtype - the new determined data type.

Derived Data Types in MPI…

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 2)
© Gergel V.P. 31 54

The Vector Method…

int MPI_Type_hvector (int count, int blocklen,
MPI_Aint stride, MPI_Data_type oldtype, MPI_Datatype *newtype);

– If the interval size are determined in bytes instead of the
initial type elements, to construct the derived data type one
can use the following function:

Derived Data Types in MPI…

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 2)
© Gergel V.P. 32 54

The Vector Method
– The derived data types for the description of the subarrays of the

multidimensional arrays can also be created by the function:
int MPI_Type_create_subarray (int ndims, int *sizes,

int *subsizes, int *starts, int order,
MPI_Data_type oldtype, MPI_Datatype *newtype),

where
- ndims – the array dimension,
- sizes – the number of elements in each dimension of the initial array,
- subsizes – the number of elements in each dimension of the

determined subarray,
- starts – the indices of the initial elements in each dimension of the

determined subarray,
- order - the parameter for pointing to the necessity of re-ordering,
- oldtype - the data type of the initial array elements,
- newtype - the new data type for the description of the subarray.

Derived Data Types in MPI…

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 2)
© Gergel V.P. 33 54

The Index Method…
– The new determined data type is created as a set of blocks

of different sizes of the initial type elements. The memory
locations of the blocks are set by the offset with respect to
the origin of the type:

int MPI_Type_indexed (int count, int blocklens[],
int indices[], MPI_Data_type oldtype, MPI_Datatype *newtype),

where
- count – the number of blocks,
- blocklens – the number of elements in each block,
- indices – the offset of each block with respect to the origin of the type

(in number of the initial type elements),
- oldtype - the initial data type,
- newtype - the new determined data type.

Derived Data Types in MPI…

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 2)
© Gergel V.P. 34 54

The Index Method…

int MPI_Type_hindexed (int count, int blocklens[],
MPI_Aint indices[], MPI_Data_type oldtype,
MPI_Datatype *newtype);

– If the block offsets are defined in bytes instead of the initial
type elements, to construct the derived data type one can
use the following function:

Derived Data Types in MPI…

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 2)
© Gergel V.P. 35 54

The Index Method:
– Example: Constructing a type for the description of the

upper triangle matrix of nxn size:

// constructing a type for the description of the upper triangle matrix
for (i=0, i<n; i++) {

blocklens[i] = n - i;
indices[i] = i * n + i;

}
MPI_Type_indexed (n, blocklens, indices, &UTMatrixType,

&ElemType);

Derived Data Types in MPI…

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 2)
© Gergel V.P. 36 54

The Structural Method:
– This method is the most general constructing method for

creating the derived data type, when the corresponding type
map is set explicitly:

int MPI_Type_struct (int count, int blocklens[],
MPI_Aint indices[], MPI_Data_type oldtypes[],
MPI_Datatype *newtype),

where
- count – the number of blocks,
- blocklens – the number of elements in each blocks,
- indices – the offset of each block with respect to the origin of

the type in bytes,
- oldtypes - the initial data types for each block separately,
- newtype - the new determined data type.

Derived Data Types in MPI…

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 2)
© Gergel V.P. 37 54

Derived Data Type Declaring and Deleting:
– The created data type should be commited before being

used by means of the following function:

– After the termination of its use, the derived type must be
annulled by means of the following function:

int MPI_Type_commit (MPI_Datatype *type);

int MPI_Type_free (MPI_Datatype *type);

Derived Data Types in MPI…

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 2)
© Gergel V.P. 38 54

Forming Messages by Means of Data Packing and
Unpacking…
– An explicit method of assembling and disassembling the

messages, which contain values of different types and are
located in different memory locations:

int MPI_Pack (void *data, int count, MPI_Datatype type,
void *buf, int bufsize, int *bufpos, MPI_Comm comm),

where
- data – the memory buffer with the elements to be packed,
- count – the number of elements in the buffer,
- type – the data type for the elements to be packed,
- buf - the memory buffer for packing,
- buflen – the buffer size in bytes,
- bufpos – the position for the beginning of buffering (in bytes from

the origin address of the buffer),
- comm - the communicator for the packed message.

Derived Data Types in MPI…

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 2)
© Gergel V.P. 39 54

Derived Data Types in MPI…

The Scheme of Data Packing and Unpacking…
The data to be packed

а) data packing b) data unpacking

The packing buffer

bufpos

The data to be packed

The packing buffer

bufpos

MPI_Pack

The buffer fo r data unpacking

The buffer to be unpacked

bufpos

The data after
unpacking

The buffer to be unpacked

bufpos

MPI_Unpack

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 2)
© Gergel V.P. 40 54

Forming Messages by Means of Data Packing and
Unpacking…
– To determine the buffer size necessary for packing, it is possible

to use the following function:

– To send the packed data the prepared buffer must be used in the
function MPI_Send with the type MPI_PACKED,

– After the receiving the message with the type MPI_PACKED,
the data may be unpacked by means of the following function:

MPI_Pack_size (int count, MPI_Datatype type,
MPI_Comm comm, int *size);

int MPI_Unpack (void *buf, int bufsize, int *bufpos,
void *data, int count, MPI_Datatype type, MPI_Comm comm);

Derived Data Types in MPI…

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 2)
© Gergel V.P. 41 54

Forming Messages by Means of Data Packing and
Unpacking…
– The function MPI_Pack is called sequentially for packing all

the necessary data. Thus, if message is a set of variables a,
b and n

it is necessary to carry out the following operations in order
to pack the data:

double a /* адрес 24 */; double b /* адрес 40 */; int n /* адрес 48 */;

bufpos = 0;
MPI_Pack(a,1,MPI_DOUBLE,buf,buflen,&bufpos,comm);
MPI_Pack(b,1,MPI_DOUBLE,buf,buflen,&bufpos,comm);

Derived Data Types in MPI…

MPI_Pack(n,1,MPI_INT,buf,buflen,&bufpos,comm);

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 2)
© Gergel V.P. 42 54

Forming Messages by Means of Data Packing and
Unpacking…
– To unpack the data It is necessary to carry out the following:

bufpos = 0;
MPI_Unpack(buf,buflen,&bufpos,a,1,MPI_DOUBLE,comm);
MPI_Unpack(buf,buflen,&bufpos,b,1,MPI_DOUBLE,comm);
MPI_Unpack(buf,buflen,&bufpos,n,1,MPI_INT,comm);

Derived Data Types in MPI…

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 2)
© Gergel V.P. 43 54

Derived Data Types in MPI

Forming Messages by Means of Data Packing and
Unpacking:
– This approach causes the additional operations of packing

and unpacking the data,

– This method may be justified, if the message sizes are
comparatively small and the message is packed/unpacked
sufficiently rarely,

– Packing and unpacking may prove to be useful, if buffers
are explicitly used for the buffered data communication
method

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 2)
© Gergel V.P. 44 54

Summary

The data communication between two processes are
discussed. The modes of operation execution, such
as the standard, synchronous, buffered and ready
ones, are described in detail
Non-blocking data communications between the
processes is discussed for every operation
Collective data communication operations are
considered
The use of derived data types in MPI is discussed

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 2)
© Gergel V.P. 45 54

Discussions

Adequacy of the supported data communication
operations in MPI
Recommendations of usage for different methods
of constricting the derived data types

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 2)
© Gergel V.P. 46 54

Exercises…

Data Transmission between Two Processes:
1. Derive new variants of the previously developed programs with

different modes of data communications. Compare the execution
time of data communication operations in cases of different
modes.

2. Derive new variants of the previously developed programs using
the non-blocking method of data communication operations.
Estimate the necessary amount of the computational operations,
which is needed to execute data communication and
computations in parallel. Develop the program, which has no
computation delays caused by waiting for the transmitted data.

3. Develop a program, where two processes repeatedly exchange
messages of N byte length and use the operation of simultaneous
data sending and receiving. Compare the results of the
computational experiments.

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 2)
© Gergel V.P. 47 54

Exercises…

Collective Data Transmission Operations:
4. Develop a sample program for each collective operation

available in MPI.
5. Develop the implementations of collective operations using

point-to-point communications. Carry out the computational
experiments and compare the execution time of the
developed programs to the functions of MPI for collective
operations.

6. Develop a program, carry out the experiments and
compare the results for different algorithms of data
gathering, processing and broadcasting (the function
MPI_Allreduce).

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 2)
© Gergel V.P. 48 54

Exercises

The Derived Data Types in MPI…
7. Develop a sample program for each method of

constructing the derived data types available in MPI.
8. Develop a sample program using data packing and

unpacking functions. Carry out the experiments and
compare the results to the results obtained in case of the
use of the derived data types.

9. Develop the derived data types for the rows, columns and
diagonals of matrices.

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 2)
© Gergel V.P. 49 54

References…

The internet resource, which describes the standard
MPI: http://www.mpiforum.org
One of the most widely used MPI realizations, the
library MPICH, is presented on http://www-
unix.mcs.anl.gov/mpi/mpich
The library MPICH2 with the realization of the
standard MPI-2 is located on http://www-
unix.mcs.anl.gov/mpi/mpich2

http://www.mpiforum.org/
http://www-unix.mcs.anl.gov/mpi/mpich
http://www-unix.mcs.anl.gov/mpi/mpich
http://www-unix.mcs.anl.gov/mpi/mpich2
http://www-unix.mcs.anl.gov/mpi/mpich2

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 2)
© Gergel V.P. 50 54

References…

Group, W., Lusk, E., Skjellum, A. (1994). Using MPI.
Portable Parallel Programming with the Message-
Passing Interface. –MIT Press.
Group, W., Lusk, E., Skjellum, A. (1999a). Using MPI -
2nd Edition: Portable Parallel Programming with the
Message Passing Interface (Scientific and Engineering
Computation). - MIT Press.
Group, W., Lusk, E., Thakur, R. (1999b). Using MPI-2:
Advanced Features of the Message Passing Interface
(Scientific and Engineering Computation). - MIT Press.

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 2)
© Gergel V.P. 51 54

References

Pacheco, P. (1996). Parallel Programming with MPI.
- Morgan Kaufmann.
Quinn, M. J. (2004). Parallel Programming in C with
MPI and OpenMP. – New York, NY: McGraw-Hill.
Snir, M., Otto, S., Huss-Lederman, S., Walker, D.,
Dongarra, J. (1996). MPI: The Complete Reference.
- MIT Press, Boston, 1996.

http://www.netlib.org/utk/papers/mpi-book/mpi-book.html
http://mitpress.mit.edu/book-home.tcl?isbn=0262692155

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 2)
© Gergel V.P. 52 54

Next Section

Parallel Programming with MPI…

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 2)
© Gergel V.P. 53 54

Author’s Team

Gergel V.P., Professor, Doctor of Science in Engineering, Course
Author

Grishagin V.A., Associate Professor, Candidate of Science in
Mathematics

Abrosimova O.N., Assistant Professor (chapter 10)
Kurylev A.L., Assistant Professor (learning labs 4,5)
Labutin D.Y., Assistant Professor (ParaLab system)
Sysoev A.V., Assistant Professor (chapter 1)
Gergel A.V., Post-Graduate Student (chapter 12, learning lab 6)
Labutina A.A., Post-Graduate Student (chapters 7,8,9, learning labs

1,2,3, ParaLab system)
Senin A.V., Post-Graduate Student (chapter 11, learning labs on

Microsoft Compute Cluster)
Liverko S.V., Student (ParaLab system)

Nizhni Novgorod, 2005 Introduction to Parallel Programming: Parallel Programming with MPI (part 2)
© Gergel V.P. 54 54

About the project

The purpose of the project is to develop the set of educational materials for the
teaching course “Multiprocessor computational systems and parallel programming”.
This course is designed for the consideration of the parallel computation problems,
which are stipulated in the recommendations of IEEE-CS and ACM Computing
Curricula 2001. The educational materials can be used for teaching/training
specialists in the fields of informatics, computer engineering and information
technologies. The curriculum consists of the training course “Introduction to the
methods of parallel programming” and the computer laboratory training “The
methods and technologies of parallel program development”. Such educational
materials makes possible to seamlessly combine both the fundamental education in
computer science and the practical training in the methods of developing the
software for solving complicated time-consuming computational problems using the
high performance computational systems.

The project was carried out in Nizhny Novgorod State University, the Software
Department of the Computing Mathematics and Cybernetics Faculty
(http://www.software.unn.ac.ru). The project was implemented with the support of
Microsoft Corporation.

http://www.software.unn.ac.ru/

	Section 4. Part 2. Parallel Programming with MPI…
	Contents
	Communications between Two Processes…
	Communications between Two Processes…
	Communications between Two Processes…
	Communications between Two Processes…
	Communications between Two Processes…
	Communications between Two Processes…
	Communications between Two Processes…
	Communications between Two Processes…
	Communications between Two Processes…
	Communications between Two Processes
	Collective Communication Operations…
	Collective Communication Operations…
	Collective Communication Operations…
	Collective Communication Operations…
	Collective Communication Operations…
	Collective Communication Operations…
	Collective Communication Operations…
	Collective Communication Operations…
	Collective Communication Operations…
	Collective Communication Operations
	Derived Data Types in MPI…
	Derived Data Types in MPI…
	Derived Data Types in MPI…
	Derived Data Types in MPI…
	Derived Data Types in MPI…
	Derived Data Types in MPI…
	Derived Data Types in MPI…
	Derived Data Types in MPI…
	Derived Data Types in MPI…
	Derived Data Types in MPI…
	Derived Data Types in MPI…
	Derived Data Types in MPI…
	Derived Data Types in MPI…
	Derived Data Types in MPI…
	Derived Data Types in MPI…
	Derived Data Types in MPI…
	Derived Data Types in MPI…
	Derived Data Types in MPI…
	Derived Data Types in MPI…
	Derived Data Types in MPI…
	Derived Data Types in MPI
	Summary
	Discussions
	Exercises…
	Exercises…
	Exercises
	References…
	References…
	References
	Next Section

